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RESUMO 

A mandioca, amplamente cultivada no Brasil, exige monitoramento constante para garantir seu 

desenvolvimento, especialmente em grandes áreas onde métodos tradicionais se tornam 

ineficientes. Este estudo propõe uma abordagem alternativa baseada em inteligência artificial 

aplicada ao geoprocessamento de imagens multiespectrais e RGB obtidas por RPAS. A 

pesquisa foi realizada na EMBRAPA Mandioca e Fruticultura (Cruz das Almas, BA), 

utilizando dados do drone DJI Phantom 4 Pro e do sensor Parrot Sequoia. As imagens foram 

pré-processadas no Agisoft Metashape e analisadas nas plataformas Google Earth Engine e 

Google Colab. Foram testados os algoritmos Random Forest Support Vector Machine, Gradient 

Tree Boosting e Redes Neurais Artificiais para classificar quatro classes espectrais: plantas 

cultivadas, solo exposto, plantas daninhas e sombra. Os resultados evidenciam o potencial 

dessas técnicas para aprimorar o monitoramento automatizado da cultura da mandioca, 

permitindo a detecção precoce de anomalias e decisões agronômicas mais eficientes. 
 

PALAVRAS CHAVES: Sensoriamento remoto; Processamento Digital de Imagens; Índice 

espectral; Inteligência artificial; Agricultura de precisão. 

CLASSIFICATION OF CASSAVA FIELDS USING DEEP LEARNING 

TECHNIQUES ON IMAGES OBTAINED WITH REMOTELY PILOTED 

AIRCRAFT SYSTEMS 

ABSTRACT 

Cassava, widely cultivated in Brazil,requires constant monitoring to ensure its development, 

especiallyin large areas where traditional methods become inefficient. This studyproposes an 

alternative approach based on artificial intelligence applied to thegeoprocessing of 

multispectral and RGB images obtained by RPAS. The researchwas conducted at EMBRAPA 
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Cassava and Fruit Crops (Cruz das Almas, BA), using data from the DJI Phantom 4 Pro drone 

and the Parrot Sequoia sensor. The imageswere pre-processed in Agisoft Metashape and 

analyzed on the GoogleEarth Engine and Google Colab platforms. Random Forest Support 

Vector Machine, Gradient Tree Boosting and Artificial Neural Networks algorithms were tested 

to classify four spectral classes: cultivated plants, exposed soil, weeds, and shade. Theresults 

highlight the potential of these techniques to improveautomated monitoring of cassava 

cultivation, enabling early detectionof anomalies and more efficient agronomic decisions. 

KEYWORDS: Remote Sensing, Digital Image Processing; Spectral Index; Artificial 

Intelligence; Precision Agriculture. 

CLASIFICACIÓN DE ÁREAS DE YUCA CON TÉCNICAS DE 

APRENDIZAJE PROFUNDO EN IMÁGENES OBTENIDAS CON 

SISTEMAS DE AERONAVES PILOTADAS REMOTAMENTE 

RESUMEN 

 

La yuca es cultivada en todos los estados de Brasil, requiere un seguimiento constante para 

garantizar su desarrollo, especialmente en grandes áreas donde los métodos tradicionales se 

vuelven ineficientes. Este estudio propone un enfoque alternativo basado en inteligencia 

artificial aplicada al geoprocesamiento de imágenes multiespectrales y RGB obtenidas por 

RPAS. La investigación se llevó a cabo en la Empresa EMBRAPA Mandioca e Fruticultura 

(Cruz das Almas, BA), utilizando datos obtenidos con DJI Phantom 4 Pro y del sensor Parrot 

Sequoia. Las imágenes fueron pre-procesadas en Agisoft Metashape y analizadas en las 

plataformas Google Earth Engine y Google Colab.Earth Engine y Google Colab. Random 

Forest, Support Vector Machine, Gradient Tree Boosting e Redes Neurales Artificiales se 

probaron para clasificar cuatro clases espectrales: plantas cultivadas, suelo expuesto, maleza y 

sombra. Los resultados muestran el potencial de estas técnicas para mejorar el monitoreo del 

cultivo de mandioca, permitiendo la detección temprana de anomalías y detección precoz de 

anomalías y decisiones agronómicas más eficientes. 

 

PALABRAS-CLAVES: Teledetección, Procesamiento Digital de Imágenes; Índice espectral; 

Inteligencia Artificial; Agricultura de precisión. 

INTRODUÇÃO 

A agricultura de precisão desponta como um paradigma tecnológico essencial para 

enfrentar os desafios contemporâneos relacionados à segurança alimentar, à sustentabilidade 

agrícola e à crescente demanda global por alimentos. Estima-se que, até 2050, será necessário 

alimentar mais de 10 bilhões de pessoas, o que exigirá um aumento significativo na 

produtividade agrícola, estimado entre 35% e 56% em relação aos níveis de 2013 (FAO, 2017; 

Van Dijk et al., 2021). Nesse cenário, torna-se urgente o desenvolvimento de estratégias 
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eficientes para o monitoramento e manejo das culturas, especialmente frente às limitações 

impostas por pragas, doenças, plantas daninhas e estresses ambientais (Fried et al., 2017). 

Entre as culturas de relevância global, a mandioca (Manihot esculenta Crantz) destaca-

se como fonte primária de carboidratos para mais de 800 milhões de pessoas, sobretudo em 

regiões tropicais em desenvolvimento. No Brasil, ocupa posição de destaque entre os principais 

produtos agrícolas, sendo amplamente utilizada na agroindústria e na alimentação humana e 

animal (IBGE, 2017; Oyewole, Ogundele, 2001). Apesar de sua rusticidade, a mandioca é 

suscetível a diversos fatores limitantes, o que demanda monitoramento assertivo para garantir 

sua produtividade (Siviero, Tremacoldi, 2011). 

Tradicionalmente, o acompanhamento do desenvolvimento das lavouras tem dependido 

de inspeções visuais in situ, métodos que, além de laboriosos e subjetivos, são limitados em 

escala temporal e espacial. O advento do sensoriamento remoto, especialmente por meio de 

RPAS equipados com sensores RGB e multiespectrais, revolucionou essa abordagem, 

oferecendo imagens de alta resolução espacial e temporal a baixo custo (Han et al., 2022; 

Bouguettaya et al., 2021). Essas tecnologias permitem a observação detalhada do estado 

nutricional e fitossanitário das culturas, favorecendo a aplicação localizada de insumos e a 

tomada de decisões mais precisas (Hunt, Daughtry, 2018; Santos et al., 2022). 

No entanto, a transformação dos dados espectrais em informação acionável exige 

métodos computacionais avançados, capazes de decodificar padrões complexos associados aos 

diferentes componentes agrícolas. Nesse contexto, os algoritmos de aprendizado de máquina 

surgem como ferramentas promissoras para a classificação automatizada de elementos como 

plantas cultivadas, solo exposto e plantas daninhas componentes críticos para o manejo 

eficiente das lavouras. 

Entre os algoritmos mais utilizados, destacam-se o Support Vector Machine (SVM), 

conhecido por sua capacidade de lidar com conjuntos de dados de alta dimensionalidade e 

margens de separação bem definidas; o Random Forest (RF), que utiliza múltiplas árvores de 

decisão para melhorar a precisão e reduzir o risco de overfitting; o Gradient Tree Boosting, 

técnica ensemble que combina árvores fracas para formar um preditor robusto; e as Redes 
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Neurais Artificiais, que oferecem arquiteturas profundas capazes de aprender representações 

hierárquicas complexas a partir de dados multiespectrais. 

Apesar dos avanços, ainda há escassez de estudos comparativos sistemáticos que 

avaliem o desempenho relativo desses algoritmos no contexto específico dos cultivos de 

mandioca, cuja arquitetura foliar, ciclo fenológico e assinatura espectral exigem abordagens 

customizadas de classificação. Além disso, a discriminação de plantas daninhas em meio ao 

dossel cultural representa um desafio técnico relevante, devido à sobreposição espectral entre 

espécies e à variabilidade sazonal dos alvos de interesse. A precisão nessa distinção impacta 

diretamente a eficiência do controle fitossanitário, a redução de insumos agrícolas e a 

maximização da produtividade. 

Diante desse contexto, este estudo tem como objetivo avaliar comparativamente a 

eficácia de diferentes algoritmos de Machine learning Random Forest, Support Vector 

Machine, Gradient Tree Boosting e Redes Neurais Artificiais (Deep Learning) na classificação 

espectral de componentes agrícolas em cultivos de mandioca. O foco principal está na 

discriminação entre plantas cultivadas, solo exposto e plantas daninhas. A análise contempla 

não apenas métricas de acurácia, mas também aspectos relacionados à robustez operacional, 

eficiência computacional e capacidade de generalização em diferentes contextos espaciais e 

temporais. 

A relevância desta pesquisa transcende o âmbito acadêmico, oferecendo subsídios 

técnicos para: Desenvolvimento de sistemas automáticos de alerta precoce para infestações de 

plantas daninhas; Otimização de práticas de manejo integrado em agricultura de precisão. Ao 

integrar técnicas de aprendizado de máquina de última geração com dados espectrais obtidos 

por RPAS, este trabalho busca contribuir para a transição paradigmática rumo a sistemas 

agrícolas mais eficientes, sustentáveis e resilientes. 

MATERIAIS E MÉTODOS 

Os trabalhos foram realizados na estação experimental da EMBRAPA Mandioca e 

Fruticultura, localizada no município de Cruz das Almas, Bahia, Brasil (12°39’25,462” S; 

39°05’43,485” W), Figura 1. 
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Figura 1. Área de estudo, áreas cultivo estação experimental da Embrapa 

Mandioca e Fruticultura, Cruz das Almas, Bahia 

  

Fontes: Elaborado autores 2025 

Inicialmente, foi efetuado um levantamento aéreo com um RPAS de asa rotativa, 

modelo DJI Phantom 4 Pro, Figura 2a, equipado com uma câmera RGB com distância focal de 

5,74 mm e resolução de 12 MP. Adicionalmente, foi acoplada ao drone uma câmera 

multiespectral Parrot Sequoia, composta pelas bandas Green, Red, Red-edge e NIR Figura 2b, 

totalizando um peso de aproximadamente 1460 g. O drone utilizado na pesquisa possui registro 

no Sistema de Aeronaves Não Tripuladas (SISANT) da Agência Nacional de Aviação Civil-

ANAC, o número de cadastro PP355316018. Ressalta-se que o piloto responsável pelo voo 

também está devidamente registrado no SISANT, conforme exigido pela regulamentação 

brasileira. De acordo com as normas da ANAC, voos realizados fora de zonas de restrição e 

que não ultrapassem a altitude de 400 pés não necessitam de autorização específica emitida pela 

agência. 

 O planejamento da missão aérea foi realizado por meio do aplicativo DJI GS Pro 

(v2.0.17), levando em consideração as condições meteorológicas e de iluminação ideais para a 
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aquisição de imagens de alta qualidade. Foram observadas as condições de vento, que se 

mantiveram dentro dos limites operacionais seguros para o RPAS, garantindo a estabilidade da 

aeronave e evitando distorções nas imagens durante o voo. 

 A operação foi executada a uma altura de 40 metros acima do nível do solo, com 

velocidade constante de 4 m/s, cobrindo uma área total de 9,14 hectares. A missão foi iniciada 

por volta das 11h00, horário estrategicamente escolhido para assegurar iluminação solar 

adequada, minimizando a formação de sombras e otimizando a resposta espectral dos alvos. 

Foram configuradas sobreposições de 80% na direção transversal e 70% na longitudinal, 

visando garantir a qualidade dos ortomosaicos e a precisão na reconstrução tridimensional da 

área. 

Figura 2. Imagem do RPAS e Sensor Parrot Sequoia utilizados. 

 

Fonte: www.dji.com e www.parrot.com 

Foram coletadas cerca de 511 imagens RGB, com GSD de 1,2 cm/px e 4688 imagens 

provenientes da câmera multiespectral Parrot Sequoia, abrangendo as bandas Green (550 nm), 

Red (660 nm), Red-edge (735 nm) e NIR (790 nm) para um GSD de 4,157 cm/px. 

Posteriormente, as imagens foram processadas no software Agisoft Metashape, 

resultando na geração de produtos geoespaciais como a nuvem de pontos, o Modelo Digital de 

Elevação (MDE), o Modelo Digital do Terreno (MDT) e os respectivos ortomosaicos. Foram 

gerados ortomosaicos específicos para as bandas NIR, Green, Red e Red-edge, captadas pela 

(a) (b) 
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câmera multiespectral Parrot Sequoia, bem como o ortomosaico correspondente à câmera RGB 

embarcada no drone Phantom, Figura 3. 

Todos os mosaicos foram posteriormente exportados para a plataforma Google Earth 

Engine, onde foram utilizados para o cálculo dos índices espectrais. Para isso, as bandas foram 

combinadas, integrando as imagens RGB do Phantom com as bandas Green, Red, Red-edge e 

NIR da Parrot Sequoia. 

Figura 3. Imagem do RPAS e Sensor Parrot Sequoia utilizados. 

 

Fonte: Elaborado autores 2025 

Índices espectrais de Vegetação 

Para o cálculo dos índices espectrais, foi utilizada a biblioteca eemont, desenvolvida em 

Python por Montero (2021). Esse pacote estende a API do Google Earth Engine, oferecendo 

funcionalidades avançadas para o pré-processamento e análise de imagens de satélite, 

especialmente de plataformas como Landsat, Sentinel e MODIS. A biblioteca eemont incorpora 

métodos utilitários que simplificam tarefas como: aplicação de correções atmosféricas, cálculo 

de índices espectrais (NDVI, EVI, SAVI, entre outros), manipulação de máscaras de nuvens e 

sombras, além da integração com bibliotecas como pandas e matplotlib para análise estatística 

e visualização gráfica. 
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Para otimizar o desempenho dos modelos de classificação, aplicou-se a técnica de 

Eliminação Recursiva de Variáveis com Validação Cruzada (RFECV), permitindo selecionar 

as variáveis mais relevantes, reduzir a dimensionalidade e evitar overfitting (de Villiers et al., 

2024). 

Durante o processo, o atributo ranking_ foi utilizado para avaliar a importância relativa 

de cada variável. As variáveis com ranking igual a 1 foram consideradas as mais relevantes e 

mantidas no modelo final, enquanto aquelas com valores superiores foram descartadas por 

apresentarem menor contribuição preditiva. Essa seleção automatizada favorece a construção 

de modelos mais robustos, interpretáveis e eficientes, especialmente em contextos com grande 

volume de dados espectrais. 

Os índices de vegetação desempenham um papel fundamental na quantificação de 

indicadores de saúde vegetal, incluindo atividade fotossintética, presença de clorofila, biomassa 

e propriedades do solo (Brewer et al 2022; Burns et al.,2022; Xiao et al 2013, Li, Z.; Chen, Z, 

2011; Ballesteros et al 2021). Sua aplicação se estende à avaliação de atributos-chave de 

crescimento e rendimentos potenciais da cultura. Neste estudo, foram explorados 12 índices de 

vegetação amplamente utilizados na caracterização da vegetação descritos na tabela 1. 

Tabela 1. Descrição dos índices de vegetação selecionados. 

Indice Bandas  Formula Referencias  

Índice de Vegetação 

Avançado (AVI) 

('N', 'R') (N * (1.0 - R) * (N - R)) ** (1/3) Montero (2021) 

BITM ('B', 'G', 

'R') 

(((B**2.0)+(G**2.0)+(R**2.0))/3.0)**0.5 Montero (2021) 

Índice de Vegetação da 

Clorofila (CVI) 

('N', 'R', 

'G') 

(N * R) / (G ** 2.0) Colla et al., 2024 

Índice de excesso de 

vermelho (ExR) 

('R', 'G') 1.4 * R - G Fernandes et al., 

2022 
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Índice de Vegetação por 

Diferença Normalizada 

Verde-Azul (GBNDVI) 

('N', 'G', 

'B') 

(N - (G + B))/(N + (G + B)) Moges et al., 

2005 

Índice de vegetação por 

diferença normalizada 

(NDVI) 

('N', 'R') (NIR - RED)/(NIR + RED) Marion et al., 

2021 

Índice de Água por 

Diferença Normalizada 

(NDWI) 

('G', 'N') (G - N) / (G + N) Rodrigues et al., 

2017 

Índice de estrutura (SI) ('B', 'G', 

'R') 

((1.0 - B) * (1.0 - G) * (1.0 - R)) ** (1/3) Montero (2021) 

Proporção Simples (SR) ('N', 'R') N/R Montero (2021) 

Índice de Vegetação por 

Diferença Transformada 

(TDVI) 

('N', 'R') 1.5 * ((N - R)/((N ** 2.0 + R + 0.5) ** 

0.5)) 

Barros et al.,2020 

Índice de Vegetação 

Aprimorado 2 (EVI2) 

('g', 'N', 'R', 

'L') 

g * (N - R) / (N + 2.4 * R + L) Villela (2019) 

Índice de Vegetação 

Ajustado ao Solo Otimizado 

(OSAVI) 

('N', 'R') (N - R) / (N + R + 0.16) Neves et al.,2025 

 

Algoritmos de Aprendizado de Máquina 

Foram selecionados três algoritmos de aprendizado de máquina para este estudo: 

Random Forest (RF), Gradient Tree Boosting (GTB) e Super Vector Machine (SVM). Esses 

algoritmos foram implementados em Python utilizando suas respectivas bibliotecas. A 

otimização de hiperparâmetros foi realizada para determinar os melhores parâmetros para cada 

modelo.  

A regressão RF é um algoritmo de aprendizado de máquina supervisionado disponível 

para a previsão de dados contínuos. Para melhorar a precisão, o RF cria uma floresta de árvores 
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de decisão usando um subconjunto aleatório de dados de treinamento. Cada árvore consiste em 

uma previsão que é usada para criar uma previsão final com base nos valores médios de todas 

as previsões das árvores individuais (Breiman, 2001; Pedregosa et al.,2011) 

O algoritmo de regressão Gradiente Boosting é uma técnica de aprendizado conjunto 

que cria modelos preditivos (Pedregosa et al.,2011 Ke et al., 2017). Árvores de decisão são 

criadas usando um procedimento iterativo que começa com aprendizes fracos. O objetivo é criar 

aprendizes fortes reduzindo os pseudo-valores residuais (a diferença entre os valores 

observados e previstos). Cada árvore é adicionada para minimizar a função de perda, que é 

definida inicialmente no início do processo. Portanto, cada árvore é treinada para prever valores 

que possam reduzir o erro entre os valores observados e previstos (Friedman,2001). 

Para a aplicação dos algoritmos de classificação de imagens, foi necessário realizar a 

coleta de amostras, distribuídas nas classes seguintes: plantas cultivadas 461 amostras, solo 

exposto 149 amostras, plantas daninhas 126 amostras e sombras 102 amostras. Com base na 

amostragem, aplicou-se a função Feature Collection sobre um conjunto de polígonos amostrais, 

a fim de quantificar o número de pixels correspondentes a cada classe: plantas cultivadas 

165763, solo exposto 45657, plantas daninhas 5695 e sombras 4224. 

Com base na seleção das variáveis mais relevantes pelo método RFECV, foram 

definidos os dados de entrada para o treinamento da Rede Neural Artificial. A partir dessa 

seleção e da escolha dos pixels amostrais, a rede foi configurada para processar os valores por 

meio de técnicas de Deep Learning, utilizando um algoritmo de redes neurais. As classes 

propostas foram utilizadas como dados de saída, com o objetivo de gerar uma imagem 

classificada a partir das amostras, conforme ilustrado na Figura 5. 

Figura 5. Estrutura da Rede Neural Artificial com arquitetura FeedForward com 

16 neurônios de entrada, 3 camadas ocultas de 9 neurônios cada, e uma camada de saída 

como os 5 neurônios correspondentes as 5 classes Fonte: Elaborado pelos autores 
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Fonte: Elaborado pelos autores 2025 

Para a implementação dos algoritmos, os dados foram exportados para o assets do 

Google Earth Engine, permitindo o processamento em nuvem e facilitando a manipulação de 

grandes volumes de dados. A aplicação dos algoritmos de classificação Gradient Tree Boosting 

(GTB) e Redes Neurais Artificiais (RNA) teve como objetivo avaliar a eficácia de técnicas 

supervisionadas baseadas em aprendizado de máquina e aprendizado profundo na segmentação 

automática de áreas de cultivo de mandioca a partir de imagens obtidas por RPAS. 

RESULTADOS 

Os três algoritmos de aprendizado de máquina Gradient Tree Boosting (GTB), Random 

Forest (RF) e Support Vector Machine (SVM) foram avaliados com base nas métricas de 

precisão, recall e F1-Score, considerando três classes: plantas cultivadas, solo exposto e plantas 

daninhas. A Tabela 2 apresenta os valores obtidos para cada métrica, incluindo a acurácia geral. 

O SVM demonstrou desempenho sólido e equilibrado entre as classes, embora tenha 

apresentado um recall mais baixo (0.77) na classe (solo exposto). O RF teve desempenho 

satisfatório nas classes de plantas cultivadas e plantas daninhas, mas falhou completamente na 

classe solo exposto, com valores nulos de precisão, recall e F1-Score, evidenciando sua 

incapacidade de identificar essa categoria. Em contraste, o GTB destacou-se como o modelo 
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mais robusto e consistente, alcançando altos resultados em todas as métricas e classes 

especialmente na classe (solo exposto), onde obteve precisão (1.00) e F1-Score de 0.97 

consolidando-se como o algoritmo superior nesta comparação. 

Tabela 2. Valores das métricas analisadas 

 Support Vector Machine Random Forest Gradiente Tree Boosting 

Clases Plantas 

cultivada

s 

Solo 

expost

o 

Plantas 

Daninha

s 

Plantas 

cultivada

s 

Solo 

expost

o 

Plantas 

Daninha

s 

Plantas 

cultivada

s 

Solo 

expost

o 

Plantas 

Daninha

s 

Presicio

n 

0.88 0.96 0.89 0.91 0.00 0.84 0.95 1.00 0.94 

Recall 0.91 0.77 0.87 0.88 0.00 0.90 0.94 0.94 0.94 

F1-

Score 

0.90 0.86 0.88 0.89 0.00 0.87 0.95 0.97 0.94 

Acuráci

a 

0,89 0.86 0.94 

Fonte: Elaborado autor 2025 

O desempenho do modelo foi avaliado com diferentes números de épocas de 

treinamento (100, 200, 300, 400, 800, 1000 e 1200), entendidas como o número de vezes que 

todo o conjunto de dados é processado para atualização dos pesos da rede neural. Na 

primeira tentativa de classificação, os resultados iniciais revelaram limitações no conjunto de 

amostras de treinamento, tanto em termos de quantidade quanto de representatividade, o que 

poderia comprometer a capacidade de generalização do modelo. Diante disso, novas 

amostras foram coletadas para a análise, considerando três classes de interesse: plantas 

daninhas, plantas cultivadas e solo exposto (Figura 6). 

Figura 6. Classificação da cultura da mandioca utilizando o algoritmo Gradient 

Tree Boosting (GTB), considerando três classes: (a) imagem representando as classes 

identificadas, sendo a vegetação espontânea plantas daninhas em vermelho, o solo 

exposto em amarelo e as plantas de mandioca em magenta; (b) camada isolada 

correspondente apenas as plantas de mandioca, extraída da classificação GTB. 
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Fonte: Elaborado pelos autores. 

A partir da análise dos resultados obtidos com a classificação utilizando o algoritmo 

Gradient Tree Boosting (GTB), observa-se que o classificador identificou corretamente 

diversas áreas do plantio. No entanto, verificou-se a omissão de algumas bordas do dossel das 

plantas, bem como de plantas isoladas que não foram classificadas, Figura 7. 

Figura 7. A imagem (a) representa as áreas em que as bordas do dossel da cultura 

não foram corretamente classificadas; na imagem (b) representa o RGB correspondente 

à mesma área da classificação. 

    

 Fonte: Elaborado pelos autores. 

Os resultados da primeira tentativa de classificação com Deep Learning, utilizando três 

classes, mostraram-se promissores. No entanto, foi identificada a necessidade de ajustes, como 

o aumento do número de amostras e a inclusão de uma nova classe representando as sombras 

(a) (b) 

(a) (b) 
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das plantas de mandioca, fator que impacta diretamente no desempenho do classificador, Figura 

6. 

Figura 6. A imagem (a) representa a camada de classificação da cultura da 

mandioca utilizando Redes Neurais Artificiais, considerando quatro classes: plantas 

cultivadas em verde, plantas daninhas e solo exposto em amarelo, sombras em preto; na 

imagem (b)representada a camada da mandioca isolada, classificada com Redes Neurais 

Artificiais. 

    

Fonte: Elaborado pelos autores. 

A precisão do modelo foi mensurada por meio da métrica de acurácia, a qual expressa a 

proporção de classificações corretas em relação ao total de amostras avaliadas. Nesse parâmetro, o 

modelo obteve valor de 0,954, indicando elevada capacidade de atribuir corretamente as classes aos 

dados. A acurácia é calculada como a razão entre o número de amostras corretamente classificadas e o 

número total de amostras empregadas na fase de teste, sendo amplamente reconhecida como um dos 

principais indicadores de desempenho em tarefas de classificação. 

Os resultados obtidos após 200 e 800 épocas de treinamento do modelo Redes Neurais são 

apresentados na Figura 7. A métrica Model Loss quantifica o grau de ajuste do modelo aos dados de 

treinamento, refletindo a discrepância entre as previsões produzidas e os valores reais observados. A 

comparação entre diferentes números de épocas permite avaliar a evolução do aprendizado. 

Pode-se destacar que, com 200 épocas de treinamento, o modelo apresentou melhores resultados 

em relação ao equilíbrio entre acurácia e perda, tanto nos dados de treinamento quanto de validação. 

(a) (b) 
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Observa-se uma melhor generalização, com valores mais próximos entre acurácia de treino e validação, 

e menor diferença nas curvas de perda, o que indica menor risco de overfitting. Já com 800 épocas, 

apesar do aumento na acurácia de treinamento, nota-se uma tendência ao ajuste excessivo (overfitting), 

onde o modelo se adapta demais aos dados de treino, mas perde desempenho ao ser aplicado em novos 

dados. Assim, os resultados indicam que o treinamento com 200 épocas foi mais eficiente, promovendo 

melhor desempenho geral do classificador. 

Figura 7. Model Accuracy e Model loss, obtidos nas épocas de treinamento, O 

gráfico (a) representa a curva de acurácia do classificador durante o treinamento com 800 

épocas. A linha azul mostra a acurácia nos dados de treinamento, enquanto a linha 

marrom indica a acurácia nos dados de validação. No gráfico (b), é apresentada a curva 

de perda (Loss) correspondente: a linha azul representa os valores de perda nos dados de 

treinamento e a linha marrom, nos dados de validação. O gráfico (c) mostra a curva de 

acurácia durante o treinamento com 200 épocas, seguindo a mesma convenção de cores, 

azul para os dados de treinamento e marrom para validação. Por fim, o gráfico (d) 

representa a curva de perda para as 200 épocas, também com a linha azul indicando a 

perda nos dados de treinamento e a marrom, nos dados de validação. 

     

              

 

 

 

 

 

(c) (d) 

(a) (b) 
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 Fonte: Elaborado pelos autores. 

Matriz de Confusão 

A matriz de confusão foi utilizada para representar o desempenho do modelo de Redes 

Neurais Artificiais na tarefa de classificação. Essa ferramenta permite visualizar a quantidade 

de acertos e erros do classificador, comparando as previsões geradas com os valores reais e 

facilitando a análise da eficácia do modelo. Os resultados indicam que o modelo é capaz de 

diferenciar as classes e alcançar elevados níveis de precisão na maioria dos casos. 

Figura 8. A imagem representa a matriz de confusão do algoritmo de Redes Neurais 

Artificiais, permitindo uma comparação direta da performance com o algoritmo GTB. 

Essa visualização é fundamental para a avaliação quantitativa da precisão de cada 

modelo nas diferentes classes analisadas. 

 

 Fonte: Elaborado pelos autores. 

DISCUSSÃO 

Este estudo avaliou o desempenho de algoritmos de aprendizado de máquina aplicados à 

classificação espectral em cultivos de mandioca. Imagens obtidas por drones foram utilizadas para 

extrair variáveis explicativas, incluindo índices de vegetação e características texturais derivadas da 
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matriz de covariância de níveis de cinza (GLCM) (de Villiers et al., 2024), com base nas bandas 

espectrais RGB, Red, Red-edge e infravermelho próximo (NIR). Essas variáveis foram empregadas 

como entrada em quatro algoritmos: Random Forest, Gradient Tree Boosting, Support Vector Machine 

e Redes Neurais Artificiais. 

Estudos que aplicaram redes neurais artificias na agricultura têm demonstrado resultados 

promissores em diferentes contextos, como o monitoramento de cultivos de uva, a identificação de 

doenças em plantas e o reconhecimento de plantas daninhas. Entre esses, destacam-se os trabalhos de 

(Silva, Schimiguel, 2020), (da Silva, Menezes, 2023), e (Marques, 2019). 

No estudo conduzido por (da Silva, Menezes, 2023), o modelo foi avaliado por meio da métrica 

de acurácia, alcançando o valor de 0,9795 após apenas 15 épocas de treinamento. Embora os autores 

não apresentem detalhes sobre a arquitetura da rede empregada, observam-se diferenças significativas 

em relação ao presente trabalho 

Geralmente, quanto maior for o número de épocas, melhor o modelo aprende com os dados e 

reduz os erros de treinamento. Embora a quantidade de épocas utilizada para treinar os algoritmos não 

seja um valor fixo em cada estudo, o fator mais representativo é o volume de dados das variáveis de 

entrada para a construção da rede. A quantidade e a qualidade das amostras coletadas influenciam 

diretamente os resultados, garantindo que estes permaneçam dentro de valores aceitáveis. 

Na classificação da doença da folha da mandioca utilizando Redes Neurais Convolucionais, 

Santos (2021) obteve resultados satisfatórios com o algoritmo desenvolvido, alcançando 91% de 

acurácia nos diagnósticos de patógenos, com apenas 10 épocas de treinamento. Os conjuntos de dados 

utilizados nesse estudo foram obtidos por meio da coleta manual de folhas, posteriormente fotografadas 

para compor os bancos de amostras, utilizando exclusivamente imagens no espectro visível (RGB). 

Em contraste, o presente trabalho empregou imagens multiespectrais obtidas por câmeras RGB 

e Parrot Sequoia acopladas a um RPAS, abrangendo as bandas NIR, RedEdge e Green. Essa abordagem 

possibilitou o cálculo de diversos índices espectrais, resultando na extração de um conjunto mais 

abrangente de variáveis e, consequentemente, em um desempenho superior do modelo de Redes Neurais 

Artificiais, aplicado ao monitoramento da cultura da mandioca. 

Por outro lado, neste estudo, a coleta das amostras foi realizada digitalmente, diretamente sobre 

o raster gerado pelas imagens obtidas com o RPAS. Essa abordagem, embora prática e eficiente, pode 

resultar na seleção de pixels mistos, ou seja, pixels que representam mais de uma classe, o que pode 
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comprometer a qualidade das amostras e, consequentemente, afetar negativamente o desempenho do 

classificador. 

Os algoritmos treinados Gradiente Tree Bosting, Random Forest, Support Vector Machine e 

Redes Neurais, segundo os apresentaram desempenho na classificação espectral da cultura da mandioca. 

Este resultado pode ser atribuído à capacidade das Redes Neurais de extrair automaticamente padrões 

relevantes a partir das imagens multiespectrais, proporcionando um aprendizado mais eficiente em 

relação às demais técnicas avaliadas. As Redes Neurais apresentaram maior acurácia tanto na etapa de 

treinamento quanto na de classificação, mostrando-se mais eficazes na diferenciação das distintas 

classes espectrais associadas à cultura da mandioca. 

Apesar dos resultados positivos, observou-se que o GTB apresenta limitações em determinadas 

situações, como nas bordas do dossel das plantas e na detecção de plantas isoladas. Essas limitações 

podem estar associadas à resolução espacial das imagens, à variabilidade espectral ou à necessidade de 

uma amostragem mais representativa durante o treinamento dos modelos. Além disso, a ausência da 

classe “sombra” em algumas tentativas iniciais de classificação demonstrou impacto direto no 

desempenho dos modelos, reforçando a importância de sua inclusão nas abordagens supervisionadas. 

Em síntese, os resultados indicam que tanto o GTB quanto as CNN são algoritmos robustos e 

eficazes para aplicações em agricultura de precisão, desde que acompanhados por um conjunto de dados 

bem estruturado e por estratégias complementares, como a seleção de atributos e o ajuste fino dos 

parâmetros de classificação. Os avanços obtidos com esses métodos reforçam o papel dos RPAS e das 

técnicas de geoprocessamento como aliados estratégicos no monitoramento de culturas agrícolas, como 

a mandioca. 

CONCLUSÕES 

Este estudo avaliou o desempenho de uma Rede Neural FeedForward, Gradient Tree 

Boosting (GTB), Random Forest e Support Vector Machine na classificação de áreas de cultivo 

de mandioca a partir de imagens multiespectrais obtidas por RPAS. A pesquisa foi conduzida 

com o objetivo de identificar qual abordagem oferece maior acurácia e robustez na segmentação 

automática das classes de interesse, contribuindo para a agricultura de precisão e para o manejo 

eficiente desta cultura de grande importância socioeconômica no Brasil. 

Os resultados demonstraram que ambos os algoritmos apresentaram desempenho 

satisfatório na classificação das áreas, com elevada taxa de acertos na identificação das classes 
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plantas cultivadas, solo exposto e plantas daninhas. No entanto, a Rede Neural FeedForward 

mostrará desempenho superior, em relação à O GTB, RF e SVM, especialmente na definição 

dos contornos das plantas, na discriminação de áreas com alta densidade de vegetação e na 

capacidade de diferenciar variações sutis entre classes espectrais. Esse resultado reforça a 

adequação da rede para tarefas de classificação de imagens de alta resolução, nas quais a 

preservação e interpretação das relações espaciais entre pixels desempenham papel 

fundamental. 

A utilização de imagens multiespectrais, combinando bandas RGB, Green, Red, Red-

edge e NIR, possibilitou o cálculo de uma ampla gama de índices espectrais, enriquecendo o 

conjunto de variáveis e permitindo maior sensibilidade à variação no vigor vegetativo e no 

estado nutricional das plantas. Essa abordagem se mostrou mais eficaz do que métodos 

baseados apenas em imagens RGB, conforme evidenciado na literatura comparada. 

Apesar dos resultados positivos, alguns desafios foram identificados. A coleta digital de 

amostras diretamente no ortomosaico pode gerar pixels mistos, o que compromete a pureza 

espectral e, consequentemente, a precisão do treinamento. Além disso, a ausência inicial da 

classe sombra reduziu a capacidade de discriminação do modelo em algumas tentativas de 

classificação, reforçando a necessidade de uma definição abrangente das classes desde o início 

do processo. Também se observou que condições de iluminação, variações fenológicas e a 

representatividade do conjunto de amostras influenciam diretamente o desempenho final. 

Do ponto de vista prático, este trabalho evidencia que sistemas de classificação baseados 

em visão computacional e processados em plataformas de computação em nuvem representam 

ferramentas estratégicas para o monitoramento agrícola. No caso da mandioca, essa abordagem 

permite a detecção precoce de estresses bióticos e abióticos, a otimização na aplicação de 

insumos, a redução de custos operacionais e o aumento da eficiência no manejo. Sua aplicação 

pode ser estendida para programas de monitoramento em larga escala, integrando informações 

geoespaciais para apoiar a tomada de decisão de agricultores, técnicos e gestores públicos. 

Para trabalhos futuros, recomenda-se ampliar a base de dados com imagens adquiridas 

em diferentes estágios fenológicos e sob distintas condições ambientais, explorar o uso de 

sensores hiperespectrais e integrar séries temporais de imagens para análises dinâmicas. 
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Também introduzir o uso de Redes Neurais Convolucionais que são mais robustas na extração 

de características de contexto, e testar a escalabilidade de modelos para áreas maiores. Além 

disso, a integração dessa abordagem com sistemas de gestão agrícola e plataformas de 

agricultura digital pode potencializar seu impacto, contribuindo para a transição rumo a 

sistemas produtivos mais sustentáveis, eficientes e tecnologicamente avançados. 

Os resultados deste estudo confirmam o potencial das redes neurais, associadas a 

imagens multiespectrais de alta resolução, como ferramenta robusta e versátil para o 

monitoramento e a gestão de áreas de cultivo de mandioca. Essa metodologia oferece não 

apenas avanços técnicos em relação a abordagens tradicionais, mas também benefícios 

concretos para a prática agrícola, fortalecendo o papel da agricultura de precisão como aliada 

no enfrentamento dos desafios contemporâneos de produção, sustentabilidade e segurança 

alimentar. 
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