
 
  

                                                                                                                                  

 

EVALUATION OF NEURAL NETWORK IN RESERVOIR 

CHARACTERIZATION WITH NMR DATA: PREDICTION OF 

PERMEABILITY, FZI, RQI, HFU PARAMETERS AND 

CLASSIFICATION OF POROSITY TYPES 
 

Maurício Gabriel Lacerda Mafra1; Milton Morais Xavier Junior2 

 
1  UFRN, PPGG, Natal/RN, Brasil. Email: mauricio.mafra.103@ufrn.edu.br 

ORCID: https://orcid.org/0000-0003-2720-4655 
2  UFRN, PPGG, Natal/RN, Brasil. Email: milton.morais@ufrn.br 

ORCID: https://orcid.org/0000-0002-9072-6475 

 

Abstract: Machine learning has advanced scientific research by enabling the analysis of large and complex datasets, including 

uncorrelated variables. In reservoir characterization, petrophysical parameters such as porosity and permeability are essential for 

calculating indicators like Flow Zone Indicator (FZI), Reservoir Quality Index (RQI), and Hydraulic Flow Units (HFU), and that can 

aid in pore type classification. Nuclear Magnetic Resonance (NMR) is a powerful technique in this context, as it enables direct porosity 

measurements and permeability estimation through models. In this study, porosity and gas permeability data from 506 carbonate samples 

were used to evaluate four semi-empirical models (SDR, Timur-Coates, Rios, and Han) and a deep learning model, the Multi-Layer 

Perceptron (MLP). The MLP outperformed the semi-empirical models, achieving an R² of 0.79 and σ = 3.07 for training and 0.71 and 

σ = 3.92 for testing. It also effectively differentiated HFUs and closely matched laboratory results. In pore type classification, the MLP 

model showed superior performance. These results highlight the potential of integrating NMR data with deep learning to improve HFU, 

FZI, and RQI predictions and support more accurate pore type characterization. 
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Resumo: O aprendizado de máquina tem impulsionado avanços científicos ao viabilizar a análise de grandes e complexos conjuntos de 

dados, mesmo entre variáveis não correlacionadas. Na caracterização de reservatórios, parâmetros petrofísicos como porosidade e 

permeabilidade são fundamentais para o cálculo de indicadores como o Flow Zone Indicator (FZI), Reservoir Quality Index (RQI) e 

Hydraulic Flow Units (HFU), e que podem auxiliar na classificação de tipos de poros. A Ressonância Magnética Nuclear (RMN) é uma 

técnica robusta nesse contexto, permitindo medições diretas de porosidade e estimativas de permeabilidade por meio de modelos. Neste 

estudo, dados de porosidade e permeabilidade a gás de 506 amostras de carbonatos foram utilizados para avaliar quatro modelos 

semiempíricos (SDR, Timur-Coates, Rios e Han) e um modelo de aprendizado profundo, o Perceptron Multicamadas (MLP). O MLP 

superou os modelos semiempíricos, com R² de 0,79 e σ = 3,07 para treinamento e 0,71 e σ = 3,92 para teste. O modelo também 

diferenciou eficientemente as HFUs e apresentou valores próximos aos obtidos em laboratório. Na classificação dos tipos de poros, o 

MLP apresentou desempenho superior. Assim, a integração de dados de RMN com modelos de aprendizado profundo aprimora 

significativamente a caracterização de HFU, FZI e RQI. 
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1. Introduction 

High performance in reservoir exploration is essential at all stages, from the identification of zones of interest to 

reservoir modeling, production optimization, and planning of future operations (LUCIA et al., 2003; TIAB and 

DONALDSON, 2016). In reservoirs with high heterogeneity, this process can lead to several complications. Achieving 

such high performance requires thorough reservoir characterization, which largely depends on petrophysical modeling. 

The key parameters in this context are porosity ( 𝜙 ) and permeability (𝑘 ) (CANNON, 2018). Using porosity and 

permeability data, it is possible to derive additional indicators that assist in identifying zones of interest within a reservoir, 

such as the Reservoir Quality Index (RQI) (1), the Normalized Porosity (𝜙𝑧) (2), the Flow Zone Indicators (FZI) (3), and 

the Hydraulic Flow Units (HFU) (AMAEFULE et al., 1993; TIAB and DONALDSON, 2016; EFTEKHARI et al., 2024). 

Based on these indicators, it is also possible to characterize pore types using the method proposed by Soto et al. (2010), 

which involves the transformation coefficient (𝑟) (4), as well as the “polar arm” angle derived from the FZI value (𝜃𝑃𝑜𝑙𝑎𝑟) 

(5). 

 𝑅𝑄𝐼 = 0.0314 ∙ (√
𝑘

𝜙
) (1) 

 𝜙𝑧 =
𝜙

1 − 𝜙
  (2) 

 𝐹𝑍𝐼 =
𝑅𝑄𝐼

𝜙𝑧

 (3) 

 𝑟 = 𝜙𝑧 ∙ (√𝐹𝑍𝐼2 + 1) (4) 

 𝜃𝑃𝑜𝑙𝑎𝑟 = tan−1(𝐹𝑍𝐼) (5) 

Laboratory-based permeability measurements are not feasible across an entire reservoir, making it necessary to estimate 

permeability through modeling approaches. Nuclear Magnetic Resonance (NMR) techniques provide not only porosity 

data but also enable permeability estimation through semi-empirical models or machine learning approaches, establishing 

NMR as an advanced and robust petrophysical tool for acquiring essential information in reservoir exploration (KENYON 

et al., 1988; COATES et al., 1999; DUNN, 2002; WEI et al., 2024). Therefore, comparing the results of different 

permeability models based on NMR data and validating them against laboratory measurements becomes one of the key 

objectives in understanding and calibrating reservoir models (GAVIDIA et al., 2024). Machine learning models play a 

valuable role in this context, as laboratory results do not always show direct correlation with model-based estimates, which 

can lead to significant errors if these estimates are used in subsequent reservoir characterizations (GARIA et al., 2022). 

Therefore, this study aims to obtain laboratory measurements of porosity and gas permeability from 506 samples 

collected from a highly heterogeneous environment, in order to compare these results with those obtained from NMR 

techniques. Several semi-empirical models, as well as a machine learning model, will be employed to determine which 

approach best approximates the laboratory data. These data will also be used to extract relevant information from the 

samples, enabling their characterization and the calculation of FZI and HFU. This, in turn, will allow for an evaluation of 

how the model predictions behave when applied to reservoir assessments. 

 



Mafra, M. G. L, e Xavier, M. M., Rev. Geociênc. Nordeste, Caicó, v.1, n.1, (Jan-Jun) p.30-45, 2021.                                                   31                                 

________________________________________________________________________________________________ 

 

 

1.1. Nuclear Resonance Magnetic 

NMR provides data such as porosity and relaxation time distributions, which are related to spin concentrations and the 

structure of the porous medium. It is a non-destructive technique that can be applied both in the laboratory and in well 

environments, using core plugs, whole cores, or during drilling operations. The technique is based on the relaxation of 

hydrogen nuclear spins, which are present in water and hydrocarbons. Its operating principle relies on the application of 

an external magnetic field (B₀), which causes the nuclear spins to precess. An additional magnetic field (B₁), applied at an 

angle, induces a torque that alters the precession direction toward B₁, generating magnetizations (M₀ and M₁). The 

measurement of the transverse relaxation time (T₂) is performed using specific pulse sequences, such as the CPMG 

sequence (CARR and PURCELL, 1954; MEIBOOM and GILL, 1958) or the spin echo sequence (HAHN, 1950). 

From this relaxation behavior, a T₂ relaxation time distribution curve can be obtained through iterative methods such 

as the Simultaneous Iterative Reconstruction Technique (SIRT) (CHEN et al., 2010). These relaxation time distributions 

are used in permeability modeling, as they are commonly interpreted in relation to pore sizes (COATES et al., 1999; HAN 

et al., 2018). The main models for estimating permeability using NMR are based on information extracted from the T₂ 

distribution curve (KENYON et al., 1988; COATES, 1999; RIOS et al., 2011; HAN et al., 2018). 

 

1.2. Reservoir and Pore Type Characterization 

With porosity and permeability data, it becomes possible to characterize the reservoir through parameters such as the 

RQI, FZI and HFU. The RQI reflects the reservoir's potential for exploitation, as a given location may exhibit high 

permeability but low porosity, or vice versa conditions that can result in low reservoir quality. However, even regions with 

low RQI may present hydraulic flow behavior similar to regions with high RQI, depending on their normalized porosity. 

For this reason, evaluating the FZI becomes essential. When different intervals present similar FZI values, they are grouped 

into a HFU. The clustering of HFUs can be performed arbitrarily, based on predefined thresholds, adjusted to geological 

information, or determined using statistical classification methods. As demonstrated by Soto et al. (2010), the r and 𝜃𝑃𝑜𝑙𝑎𝑟  

can be used to distinguish porosity types, such as fracture/vuggy porosity and intercrystalline porosity, by applying a 

sigmoidal cutoff function (6). 

 

𝑆(𝑟) =
𝐴 + 𝐵

{1 + 𝑒[−(
𝑟−𝐶

𝐷
)]}

 

𝐴 = −3,5916207, 𝐵 = 5,06265818, 𝐶 = −0,72243226 𝑒 𝐷 = 0,371324681 
 

(6) 

 

1.3. Geology 

The study area is located in the Potiguar Basin (Figure 1-A), situated along the Brazilian equatorial margin. This basin 

was formed by rifting processes during the opening of the South Atlantic Ocean in the Jurassic–Cretaceous period 

(MATOS, 1992; de CASTRO, 2012), and it comprises both onshore and offshore segments. The Jandaíra Formation 

represents a carbonate platform deposited between the Turonian and Campanian stages (CÓRDOBA, 2001). This region 

was selected due to its strong analogy with pre-salt reservoirs and its surface exposure, which allows for detailed 

investigation of pore space properties with high accuracy and low cost. A total of 506 plug samples were analyzed, 

collected from various locations within the Jandaíra Formation, including both outcropping areas and core samples from 

wells (Figure 1-B). These locations exhibit intense karstification and complex permoporous structures with high 

heterogeneity (LOPES et al., 2023; ARAUJO et al., 2023), which are expected to contribute to the evaluation of porosity 

types as well as to the challenges involved in permeability prediction and the estimation of reservoir quality indices such 

as FZI, RQI, and HFU. 
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Figure 1 – A) Location of the Potiguar Basin in Northeastern Brazil; B) Regional map of the Potiguar Basin. 

Source: Authors (2025) 

 

1.4. Review of Artificial Neural Networks 

 Machine learning algorithms are capable of handling complex datasets and making accurate predictions, even in 

nonlinear contexts. In supervised learning models, the data are labelled, which guides the adjustment of model parameters 

to minimize prediction errors. Among the most widely used models is the Artificial Neural Network (ANN), particularly 

the Multilayer Perceptron (MLP) (GÉRON, 2021). The perceptron is the fundamental unit of ANNs and is a mathematical 

model composed of functions (𝑤𝑛𝑚) that modify the input data (𝑥𝑖) or the outputs of other perceptrons in order to activate 

and propagate information toward generating the desired outcome. The combination of multiple organized perceptrons and 

bias terms (𝑏) in layers allows the network to transform input data into virtually any output. In regression problems, this 

output corresponds to a unique estimated value (Figure 2). 

 

 
Figure 2 – The architecture of an MLP model begins with the connection of input data to the perceptrons in the first layer, which in 

turn connect to perceptrons in subsequent layers, propagating through the network until the input data produce an output result. 

Source: Authors (2025) 

 

The architecture of an MLP model defines its structure in terms of layers, the number of perceptrons, and activation 

functions, influencing how data are processed. Training adjusts weights and biases through backpropagation (HINTON et 

al., 2006) over multiple epochs to minimize error. The architecture involves hyperparameters set by the user, while 
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parameters are adjusted automatically during training. Since there is no exact rule for the optimal hyperparameters 

(WOLPERT, 1996), multiple configurations must be tested. GridSearchCV from Scikit-Learn (PEDREGOSA et al., 2015) 

automates this process by testing combinations of hyperparameters and applying cross-validation. 

 

1.1. Semi-Empirical Models 

The most common semi-empirical models used to estimate permeability from NMR data include the Schlumberger 

Doll Research (SDR) model (7) (KENYON et al., 1988), the Timur-Coates model (8) (COATES et al., 1999), the model 

proposed by Han et al. (2018) (9), and the statistical model introduced by Rios et al. (2011). These models consist of 

exponential functions whose coefficients are calibrated using NMR results from each sample set alongside laboratory-

measured permeability, enabling reasonably accurate permeability predictions for new samples using only NMR data. The 

conventional models, SDR, Timur-Coates, and Han, determine specific ranges or values from the T₂ distribution curve to 

adjust the exponential coefficients via linear regressions. The SDR model uses only the NMR porosity (𝜑𝑁𝑀𝑅) and the 

logarithmic mean of the T₂ distribution (𝑇2 lm) (10). The Timur-Coates model (COATES et al., 1999) also uses 𝜑𝑁𝑀𝑅 but 

incorporates Bulk Volume Irreducible (BVI) and Free Fluid Index (FFI) (TIMUR, 1969) to evaluate portions of the T₂ 

distribution curve. Han’s model (HAN et al., 2018) likewise employs 𝜑𝑁𝑀𝑅 but additionally uses fractions of pore sizes 

(S1, S2, S3 and S4), calibrated by Mercury Intrusion Capillary Pressure (MICP) measurements. The statistical model is 

based on identifying statistical correlations between the distribution curves of samples and their permeability, employing 

Partial Least Squares Regression (PLSR), which extracts components that simultaneously maximize the variance of the 

distribution and its covariance with permeability (GELADI and KOWALSKI, 1986; MEHMOOD et al., 2012). 

  𝑘𝑆𝐷𝑅 = 𝑎𝑇2 𝑙𝑚
𝑏𝜙𝑁𝑀𝑅

𝑐
 (7) 

 
𝑘𝑇𝑖𝑚𝑢𝑟−𝐶𝑜𝑎𝑡𝑒𝑠 = [(

𝜙𝑁𝑀𝑅

𝐶
)

𝑎

∙
𝐹𝐹𝐼

𝐵𝑉𝐼
]

𝑏

 
(8) 

 
𝑘𝐻𝑎𝑛 = 𝑎 ∙ 𝜙𝑁𝑀𝑅

𝑏 ∙
𝑆3

𝑐 ∙ 𝑆4
𝑑

𝑆1
𝑒 ∙ 𝑆2

𝑓
  

(9) 

 
𝑇2 𝑙𝑚 =  10

[
∑ 𝐿𝑂𝐺10(𝑇2

(𝑖)
)∙𝜙𝑁𝑀𝑅

(𝑖)

∑ 𝜙𝑁𝑀𝑅
(𝑖) ]

  
(10) 

 

1.2. Workflow 

The study begins with the collection of petrophysical gas data for porosity (𝜙𝐺𝑎𝑠) and permeability (𝑘𝐺𝑎𝑠), which serve 

as labels to validate model predictions and their potential reservoir characterizations. Using these values of 𝜙𝐺𝑎𝑠 and 𝑘𝐺𝑎𝑠, 

five groups were identified based on their HFU. From the total of 506 samples, 70% of the samples from each group were 

selected for training data, and 30% were reserved for testing. After acquiring the NMR data, permeability modeling was 

performed using the SDR, Timur-Coates, Rios, Han models, and an MLP model specifically trained for this study. The 

permeability estimates from each model 𝑘𝑚𝑜𝑑𝑒𝑙  along with the 𝜑𝑁𝑀𝑅 were then used to derive reservoir information (FZI, 

RQI, and HFU) for each model and compared against laboratory gas data. Finally, these data were also utilized to classify 

pore types according to the model proposed by Soto et al. (2010). 

 

2. Methodology 

The samples consist of cylindrical plugs up to 50 mm in length and 25 mm in diameter. Of the 506 samples collected 

(Figure 3 – A, B, and C), 493 are plugs extracted from the sides of well cores (Figure 1-C), and 13 are plugs obtained from 

outcrops (Figure 1-B), both from the Jandaíra Formation, Potiguar Basin (Figure 1-A) (ARAÚJO et al., 2023; LOPES et 

al., 2023). Porosity and gas permeability data were acquired simultaneously while the gas flow was still in an unstable 
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state, followed by Klinkenberg correction (KLINKENBERG, 1941). The MesoMr12-060H-I equipment from Niumag 

(Figure 3-D) was used to acquire T2 relaxation times (Figure 3-E) through the CPMG pulse sequence. The SIRT method 

was employed to invert the signal and obtain the T2 time distribution (Figure 3-F). 

 

Figure 3 - Plug samples taken from: A) core sample with visible porosity, B) outcrop with stylolite, C) core sample with low porosity, 

D) MesoMr12-060H-I equipment from Niumag, which enables the acquisition of E) T₂ relaxation curve, and F) curve inversion using 

the SIRT method. 

Source: Authors (2025) 

 

To identify the HFUs, the KMeans method from the Scikit-Learn library (PEDREGOSA et al., 2015) was used, initially 

with 6 clusters. Since two HFUs exhibited very similar values, they were merged, resulting in a total of 5 HFUs. Cluster 

classification divided the data into subgroups for training and testing using the Stratified Shuffle Split method, also from 

Scikit-Learn. This method performs a pseudo-random split based on class labels, ensuring that 70% of the data from each 

HFU was allocated for training and 30% for testing, thus maintaining representation of all classes in both subsets. 

Multiple linear regression, used to estimate the model coefficients, was performed through logarithmic transformation 

of the models. This transformation converts the exponents of each parameter into multiplicative coefficients of the 

logarithms, which are now summed. Given the available gas permeability values, multiple linear regression determines 

these multiplicative coefficients for each logarithm, thereby fitting the model to the training data. Once the adjusted 

coefficients are obtained from the training set, it becomes possible to predict the values in the test set. To assess the 

prediction errors of the permeability models, the coefficient of determination (R²) (11) and the Root Mean Square Error in 

logarithmic scale (σ) (12) (Kenyon et al., 1988) were evaluated, since permeability spans several orders of magnitude. 

 

 𝑅2 = 1 −
∑(𝑦𝑟𝑒𝑎𝑙

(𝑖)
− 𝑦𝑝𝑟𝑒𝑑𝑖𝑐𝑡

(𝑖)
)

2

∑(𝑦𝑟𝑒𝑎𝑙
(𝑖)

− 𝑦̅𝑟𝑒𝑎𝑙)
2   (11) 

 𝑙𝑜𝑔10(𝜎) = √
1

𝑁
∑[𝑙𝑜𝑔10(𝑘𝑚𝑜𝑑𝑒𝑙

(𝑖)
) − 𝑙𝑜𝑔10(𝑘𝐺𝑎𝑠

(𝑖)
)]2

𝑁

𝑖=1

  (12) 

 

To select the optimal MLP model, multiple sets of hyperparameters were defined and trained in successive stages. In 

each stage, possible hyperparameter combinations were provided to GridSearchCV, which performed training using 5-fold 

cross-validation on subsets of the training data and returned the model with the lowest R². The hyperparameter sets in each 

subsequent stage were based on the best-performing models from the previous stage. The best model from each stage was 

then evaluated based on the σ error on the test dataset, and the model with the lowest σ was selected as the one that best 

fit the dataset. 
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3. Results 

Permeability predictions from each semi-empirical model, compared to gas-derived data, are illustrated in Figures 4 

and 5 for the training and test datasets, respectively. The clusters are represented by the colors of the data points in the 

plots: red for cluster 0, blue for cluster 1, green for cluster 2, purple for cluster 4, and orange for cluster 5. The maximum, 

minimum, and average permeability values from both the gas data and the models, as well as the R² and σ error values for 

both datasets, are presented in Table 1. A total of 14 training stages were performed for the MLP model. The number of 

hyperparameter combinations varied between 34,560 and 11,520 per stage, totaling 283,392 trained architectures. The 

optimal model was configured with two hidden layers, each containing 48 perceptrons, using the hyperbolic tangent (tanh) 

activation function and the Adam backpropagation optimization method. 

 
Table 1 – Results of maximum, minimum, and average values, R² coefficient, and σ error for each model across both datasets. 

Models 
Training Data Test Data 

Max Min Mean 𝐑𝟐 𝝈 Max Min Mean 𝐑𝟐 𝝈 

Gas 786.347 0.001 4.212 1.00 1.00 517.279 0.001 4.623 1.00 1.00 

SDR 4.067 0.0005 0.165 0.54 5.29 2.720 0.0001 0.176 0.52 5.86 

Han 8.362 0.001 0.244 0.60 4.79 6.617 0.0002 0.260 0.58 5.24 

Timur-

Coates 
3.400 0.001 0.177 0.58 4.92 2.273 0.0002 0.185 0.54 5.66 

Rios 23278.648 0.002 66.393 0.71 3.74 15750.870 0.0025 107.808 0.56 5.49 

MLP 661.253 0.002 2.904 0.79 3.07 839.999 0.0026 6.205 0.72 3.92 
Source: Authors (2025) 
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Figure 4 - Graphical representation of permeability prediction results, considering only the training dataset, for models A) SDR, B) 

Rios, C) Timur-Coates (T-C), D) Han, and E) MLP, in comparison with gas-derived data. The dotted lines indicate the σ error bounds. 

Source: Authors (2025) 

 

 

Figure 5 - Graphical representation of permeability prediction results, considering only the test dataset, for models A) SDR, B) Rios, 

C) Timur-Coates (T-C), D) Han, and E) MLP, in comparison with gas-derived data. The dotted lines indicate the σ error bounds. 

Source: Authors (2025) 

 

The plots of the results obtained using the RQI and FZI indices, along with the HFU trend lines, are shown in Figures 

6 and 7 for the training and test datasets, respectively. The models inherited the gas-based classification, and their estimates 

were calculated for each cluster. The HFU coefficients derived from the FZI and RQI indices, determined for each cluster 

based on the prior gas data classification for each model, are presented in Table 2. The separation of pore types using the 

sigmoidal curve (Equation 6) is illustrated in Figures 8 and 9, for the training and test datasets, respectively. 

 
Table 2 – HFU coefficient data for each cluster in both datasets. T-C stands for Timur-Coates. 

Clusters Training Data Test Data 

Gas SDR Rios T-C Han MLP Gas SDR Rios T-C Han MLP 

0 0.10 0.19 0.17 0.19 0.18 0.17 0.10 0.21 0.19 0.20 0.19 0.20 

1 3.46 0.23 3.05 0.25 0.32 1.79 4.33 0.25 0.63 0.24 0.30 3.14 

2 1.48 0.23 0.55 0.26 0.31 1,18 1.61 0.23 1.43 0.25 0.31 1.13 

4 0.58 0.20 0.27 0.21 0.24 0.36 0.65 0.21 0.29 0.22 0.24 0.68 

5 0.24 0.21 0.25 0.22 0.23 0.24 0.24 0.21 0.98 0.22 0.22 0.25 
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Source: Authors (2025) 

 

Figure 6 – Graphical representation of RQI and 𝜙𝑧 results, considering only the training dataset, for A) Gas data and models B) 

SDR, C) Rios, D) Timur-Coates, E) Han, and F) MLP. The lines indicate the HFU coefficients. 

Source: Authors (2025) 
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Figure 7 - Graphical representation of RQI and 𝜙𝑧 results, considering only the test dataset, for A) Gas data and models B) SDR, 

C) Rios, D) Timur-Coates, E) Han, and F) MLP. The lines indicate the HFU coefficients. 

Source: Authors (2025) 
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Figure 8 - Graphical representation of θ𝑧 and 𝑟 results, considering only the training dataset, for A) Gas data and models B) SDR, 

C) Rios, D) Timur-Coates, E) Han, and F) MLP. The line indicates the sigmoidal curve that separates pore types between 

fractures/vugs (above) and intercrystalline pores (below). 

Source: Authors (2025) 
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Figure 9 - Graphical representation of θ𝑃𝑜𝑙𝑎𝑟 and 𝑟 results, considering only the test dataset, for A) Gas data and models B) SDR, 

C) Rios, D) Timur-Coates, E) Han, and F) MLP. The line indicates the sigmoidal curve that separates pore types between 

fractures/vugs (above) and intercrystalline pores (below). 

Source: Authors (2025) 

 

4. Discussion 

Our objective is to assess whether permeability prediction models based on NMR data can replicate the characteristics 

observed in laboratory measurements. The first step after obtaining the laboratory data is to classify the HFU using the K-

Means method, which proved appropriate given that the study focuses on a single depositional environment with high 

complexity in its permoporous structures, as indicated by recent studies (ASTSAURI et al., 2024; EFTEKHARI et al., 

2024). In contrast, Soto et al. (2010) used different reservoirs to separate the HFU, which allowed for a more homogeneous 

classification, whereas in our study (Figures 6 and 7), some HFU were less represented. The pore types, compared using 

the sigmoidal curve fitted by parameters 𝑟 and θ𝑃𝑜𝑙𝑎𝑟 , were also well adjusted by Soto et al. (2010) due to their choice of 

multiple environments; in our study, however, there was limited representation of “fracture/vug” pores based on the same 

sigmoidal curve. Another relevant point of this work is the computational cost of training a model, which, due to the 

relatively small dataset (354 samples) and limited input features (128), was not excessively high. 

When evaluating permeability predictions, we observed that during training, the 𝑘𝑅𝑖𝑜𝑠 and 𝑘𝑀𝐿𝑃models achieved the 

best accuracies, with R² values of 0.71 and 0.79, and σ errors of 3.74 and 3.07, respectively (Table 1). However, the 𝑘𝑅𝑖𝑜𝑠 

model tends to overestimate the maximum and average permeability values, while the 𝑘𝑀𝐿𝑃 model provides values closer 

to those obtained from gas measurements. Additionally, the 𝑘𝑀𝐿𝑃 performed well on the test set, with an R² of 0.72 and a 

𝜎 error of 3.92, outperforming the other models, which showed an average R² of 0.55 and a σ error of 5.56.  Although the 

𝜎 error is higher compared to studies using NMR data (KENYON et al., 1988; SOUZA et al., 2013; CHEN et al., 2023), 
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the results are satisfactory, especially considering the high heterogeneity of the samples. These findings indicate that 

selecting limited parameters from the T₂ distribution curve is insufficient for accurate predictions in complex environments. 

Since the T₂ curve can be extensive, models such as artificial neural networks are able to capture subtle patterns and fine 

adjustments that conventional semi-empirical models cannot model with the same precision. 

In the training dataset, only the MLP model was able to clearly separate these five zones, although it underestimated 

the coefficient for the blue zone (cluster 1), assigning a value of 1.79 instead of 3.46. The Rios model, which achieved the 

best accuracy among the semi-empirical models, separated four zones; however, clusters 4 and 5 had very similar values 

(0.27 and 0.25), making differentiation difficult. The other semi-empirical models showed unsatisfactory performance, 

with values practically invariant across zones, preventing the distinction of more than two HFUs. In the test dataset, the 

MLP again separated five zones with good precision, except for cluster 0, which exhibited a value approximately twice as 

high as expected. Although the Rios model separated five zones, it confused the cluster correspondence relative to the gas 

data, leading to significant errors in predictions with blind data. The remaining models also maintained unsatisfactory 

performance in this scenario. These results highlight the effectiveness of more sophisticated predictive models, such as the 

MLP, in interpreting the complexity of NMR data, significantly contributing to a more accurate reservoir characterization. 

The close agreement of the MLP model with gas-derived results when evaluating the HFUs in both datasets 

demonstrated that the use of NMR data can significantly contribute to accurate reservoir characterization, especially when 

a robust model is applied for permeability prediction. This performance suggests that our dataset possesses sufficient 

complexity to effectively simulate challenging reservoirs, further reinforcing the potential of NMR techniques to 

substantially aid reservoir modeling and analysis when combined with advanced predictive approaches. 

The application of the sigmoidal function for pore type separation was not very effective, as few samples fell above 

the curve, indicating a low correlation between permeability and cavities or fractures. Although some samples contained 

vugs and stylolites, factors such as poor connectivity of the vugs and recrystallization of stylolites reduce permeability 

(ARAÚJO et al., 2023), hindering efficient classification of these pores by the sigmoidal curve. In the gas training dataset, 

only four samples exhibited fracture/vug porosity, with three belonging to cluster 1 (blue) and one to cluster 2 (green). For 

the qualitative evaluation with the sigmoidal curve, the HFUs were well defined, with lower HFU values corresponding to 

lower porosity samples. However, no predictive model successfully distinguished the samples based on pore types. The 

MLP (Figure 8-F) and Rios (Figure 8-C) models showed partial approximation to the curve, with the MLP demonstrating 

better visual fitting, although both models mixed the HFUs. In the test dataset, laboratory results identified only two 

samples above the curve (Figure 9-A), one from each cluster. The MLP predicted two samples above the curve, both from 

cluster 2 (Figure 9-F), while the Rios model predicted one, also from cluster 2 (Figure 9-C). Other models continued to 

struggle to approximate the sigmoidal curve. 

The T₂ relaxation time distribution data obtained by NMR can also be related to the size of the spin concentration and, 

consequently, to pore size (COATES et al., 1999; DUNN et al., 2002). Therefore, it would be expected that NMR delineates 

these ranges more accurately than gas-based data. However, pore type prediction is not derived directly from NMR data, 

but rather from permeability modeling. The conversion of T₂ time to pore size is not straightforward for all samples, 

meaning these variables are not necessarily correlated. As a result, semi-empirical models tend to oversimplify the NMR 

information, leading to characterizations that are excessively similar to each other in order to minimize errors. On the other 

hand, predictive models that employ more advanced statistical approaches, such as those proposed by Rios et al. (2011) 

and the MLP model, better capture the permeability characteristics. Thus, permeability characterization is more refined 

when performed with complex statistical models. In contrast, evaluating pore types for this reservoir requires a different 

perspective rather than relying solely on modeling or the T₂ distribution curve. 

 

5. Conclusions 

This study successfully achieved its objective by obtaining laboratory gas data and comparing them with various 

permeability prediction models, including three semi-empirical models, one statistical model, and one neural network-

based model. The analysis was conducted in a complex geological setting, providing distinct reservoir indicators, indices, 

and classifications, thus allowing for a more comprehensive evaluation of the permeability predictions of these models. 

By addressing this challenging context, the study not only compared the accuracy of the models but also assessed their 

impact on reservoir characterization. Among the models analyzed, the MLP model, specifically trained for this study, 
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demonstrated the highest accuracy. This model outperformed the others, both quantitatively and qualitatively, and is widely 

used in the industry. 

The results highlight a significant gap in the understanding and utilization of NMR data for permeability prediction. 

When these data are not correctly interpreted, they can lead to inaccurate reservoir characterizations, ultimately impacting 

decision-making in hydrocarbon exploration. Thus, the adoption of more sophisticated and robust models, such as the 

MLP, emerges as a promising alternative to improve permeability prediction, leading to more reliable geological 

interpretations. This not only enhances the understanding of reservoir characteristics but also assists the industry in 

optimizing resource exploration, increasing efficiency and reducing operational uncertainties. 

It is possible that the sigmoidal curve used in this study may need to be adjusted to better represent the evaluated data, 

considering the specific characteristics of the samples and the relationship between porosity and permeability. Furthermore, 

a detailed characterization of pore types would be essential to enable more accurate quantitative assessment. An interesting 

approach would be to directly use the T₂ relaxation time distribution curve obtained by NMR to classify pore types, rather 

than relying exclusively on permeability models. This method could provide a more direct insight into pore structure and 

connectivity, allowing for a more detailed interpretation of rock properties. 

Therefore, we offer the following suggestions for future complementary work: (1) use a larger sample set for fine 

adjustments; (2) evaluate pore types and adjust the sigmoidal curve to the studied data; (3) directly use NMR data to obtain 

HFUs and pore types. 
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